Solubility of Nitrous Oxide in Some Nonpolar Solvents

LEWIS CHINSUN YEN¹ and J. J. McKETTA, Jr. Department of Chemical Engineering, The University of Texas, Austin, Tex.

N ITROUS OXIDE solubility has been determined at 1-atm. partial pressure and at temperatures ranging from -10° to 40° C. in five nonpolar liquid solvents: 2,2,4-trimethylpentane, *n*-heptane, carbon tetrachloride, benzene, and carbon disulfide. The results fit the general solubility map of Kobatake and Hildebrand for gases in nonpolar solvents.

Gas solubilities in liquids have been of theoretical and practical interest for many years. The solubilities of 15 gases in various nonpolar solvents at a partial pressure of 1 atm. have recently been collected and reviewed by Kobatake and Hildebrand (5). However, the solubility of nitrous oxide in nonpolar solvents has not been studied as extensively as other gases. The only experimental data available in the literature are those reported by Horiuti (3)for nitrous oxide in carbon tetrachloride (solubility parameter = 8.60) and in benzene (solubility parameter = 9.15). In the present investigation, Horiuti's data have been checked and, in addition, the solubility of nitrous oxide in three other nonpolar solvents, 2,2,4-trimethylpentane, n-heptane, and carbon disulfide, has been determined. These solvents cover a wide range of solubility parameter, 6.85 to 10.0. This information is useful to check the general solubility map presented by Kobatake and Hildebrand (5) and to supply basic information for correlating gas solubilities (including nitrous oxide) in polar, nonassociated solvents, such as diethyl ether, methyl acetate, and chlorobenzene (12).

EXPERIMENTAL

Materials. The nitrous oxide gas of 98+% purity was cooled to dry ice temperature. Part of the contents was blown off to remove the major impurity, nitrogen or air. The cylinder was then inverted and samples were drawn from the liquid phase. Mass spectrographic analysis showed a purity of 99.5% nitrous oxide. The cylinder was maintained in its inverted position in the actual measurements of solubility. The hydrogen was 99.7% pure. The carbon dioxide gas was Matheson research grade with a minimum purity of 99.9%. The five liquid solvents were fractionated in a laboratory fractionation column of about 30 theoretical plates packed with $\frac{1}{4}$ -inch i.d., single-turn helices. Central cuts were collected and used. The sources and the physical properties of the liquid solvents are summarized in Table I.

Apparatus and Procedures. The solubility apparatus of Markham and Kobe (8) was modified as follows:

The ordinary stopcocks on the solubility bulbs were replaced by two three-way adjustable pressure stopcocks. Gas buret was jacketed in a silvered, double-walled glass cylinder, through which liquid of constant temperature was circulated by a centrifugal pump instead of an airlift (used by Markham and Kobe). The aspirator was replaced by a suitable vacuum system consisting of a dry ice cold trap, a McLeod gage, and two vacuum pumps. The gas saturator and liquid-degassing still were connected directly to the bulb for better operation. The bulb shaker was made of an acentric disk driven by a motor and connected to the bottom of the bulb.

The operating procedure was similar to that used by Markham and Kobe except that the degassed solvent was introduced into the solubility bulb under a vacuum of about 10 to 15 microns of Hg.

Results with this apparatus and procedure compare satisfactorily with results of previous investigators (Table II).

RESULTS

The solubility of nitrous oxide was determined at a partial pressure of 1 atm. and temperatures ranging from -10° to 40° C. in 2,2,4-trimethylpentane, *n*-heptane, carbon tetrachloride, benzene, and carbon disulfide. The solubility data (Table II) were calculated in units of both mole fraction and Bunsen coefficient (volume of gas at 1 atm. and 0° per unit volume of solvent when the partial pressure of gas is 1 atm.). For a total of 53 runs, the reproducibility of the results was better than 1%. The solubility of nitrous oxide in carbon tetrachloride and in benzene is in good agreement with the data reported by Horiuti (3).

Kobatake and Hildebrand (5) have constructed a general solubility map for nonpolar gases in nonpolar liquid solvents by plotting the logarithm of mole fraction of gas at 1 atm. of partial pressure and 25° , log x_2 , vs. the solubility parameters of the solvents, δ_1 . A good agreement can be seen if the solubility of nitrous oxide at 25° is interpolated from Table II and added to the Kobatake-Hildebrand map.

Kobatake and Hildebrand have also shown that for different nonpolar gases in the same solvent, $\log x_2$ increases linearly with increasing Lennard-Jones force constant, ϵ/k , of the gas. This relation is applicable to nitrous oxide, since the results of this work fit adequately the plot of $\log x_2 vs. \epsilon/k$.

Nitrous oxide is weakly polar with a dipole moment of 0.17 Debye units. Theoretical considerations including dipole-dipole interactions between nitrous oxide molecules require insignificant corrections in accord with the above treatments where nitrous oxide was considered as essentially nonpolar. Similar treatment was used by Kobatake and Hildebrand for carbon monoxide which has a dipole moment of 0.11 Debye units.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support given this project by the National Science Foundation.

LITERATURE CITED

- Clever, H.L., Saylor, J.H., Gross, P.M., J. Phys. Chem. 61, 1078 (1957).
- (2) Cook, M.W., U. S. At. Energy Comm., UCLA-2459 (1954).

¹ Present address, Philips Petroleum Co. Bartlesville, Okla.

			Table I. Sources and Physical Propertie					Refractive Index at 25° C.			Normal B. P., ° C.		
n-Heptane , Philli Carbon tetrachloride J.T. E Benzene J.T. E		Source		Grade Pure Pure Baker analyzed Baker analyzed ACS		Exptl. Ref.							
		Phillips Petroleum Co. Phillips Petroleum Co.				1.3888	1.38901 (9) 1.38511 (9) 1.4576 (10) 1.49792 (9) 1.62543 (10,11)		99.2 98.4 76.9	98.427 (76.8 (99.238 (9) 98.427 (9) 76.8 (10) 76.75 (11)		
						$1.4976 \\ 1.6253$			80.1 46.3	30.100 ().100 (9)		
1	Table II. Pe	erformance o	of Solubility	/ Apparatu	JS	Tak	le III. Solui	oility of N	itrous Ox	dde in N	lonpolar L	iquids	
Partial pressure of gas. 1 atm. Solubility. In Bunsen Coeff.							Partial pressure of nitrous oxide. 1 atm.						
Run No.	Soly.	Soly. Ref.	Run No.	Soly.	Soly. Ref.	Run No.	Solvent		Soly. Bunsen Coeff.	Av.	Mole Fraction	Bunser Coeff. (3)	
C-1 C-2	$H_2(\mathbf{g}), \mathbf{H}_2\mathbf{O}(1)$ 0.530 0.533), 40° C. 0.513 (8) 0.530 (7)	N-2 N-3	$C_6H_6(l), S_6H_6(l), S_6(l), S_6(l)$	8° C. 0.108 <i>(1)</i> 0.111 <i>(3</i>)	NI-9 NI-10 NI-1	Iso-C ₈ H ₁₈	0 10	4.598 4.576 3.796	4.587 3.786	0.03217 0.02701		
C-3 C-4 C-5 C-6	$\begin{array}{c} 0.527 \\ 0.535 \\ 0.527 \\ 0.531 \end{array}$		N-4 N-6 N-7 N-8	$\begin{array}{c} 0.116 \\ 0.113 \\ 0.118 \\ 0.113 \end{array}$		NI-2 NI-3 NI-4 NI-5		20	3.778 3.785 3.159 3.151	3.155	0.02287		
C-7 C-8 C-9 C-10	$\begin{array}{c} 0.526 \\ 0.530 \\ 0.531 \\ 0.526 \end{array}$		Av. (Av. dev. 1	0.115 1.60%		NI-8 NI-11 NI-12		30	2.678 2.679 2.681	2.679	0.01972		
C-11	0.534					NI-6 NI-7		40	$2.275 \\ 2.272$	2.273	0.01698		
Av. 0.530 Av. dev. 0.44%		_	$H_2(g), n-C_7H_{16}(l)$), 35° C. 0.1082 (2)	NH-1 NH-2 NH-3	$n-C_7H_{16}$	0	$4.133 \\ 4.140 \\ 4.136$	4.136	0.02589		
	$H_2(g), H_2O(l)$		H-2	0.108	0.1002 (2)	NH-12		10	3.538	3.538	0.02250		
C-12 C-14 C-15 C-16	$0.761 \\ 0.760 \\ 0.756 \\ 0.763$	$\begin{array}{ccc} 0.7565 & (8) \\ 0.761 & (7) \\ 0.749 & (4) \end{array}$	H-3 H-4 H-5 H-7	$\begin{array}{c} 0.108 \\ 0.108 \\ 0.105 \\ 0.110 \end{array}$		NH-4 NH-5 NH-6		20	$3.026 \\ 3.053 \\ 3.046$	3.042	0.01963		
C-17	0.757		Av. (0.108		NH-10 NH-11		30	$3.565 \\ 3.562$	3.564	0.01681		
C-18 Av. Av. dev.	0.760 0.760 0.26%		Av. dev.	1.25%		NH-7 NH-8 NH-9		40	2.239 2.254 2.240	2.244	0.01492		
$CQ_2(g), H_2O(l), 0.2^{\circ}C.$ $N_2O(g), H_2O(l), 25^{\circ}O.$. 25° C.	NC-11	CCl₄	0	6.068	6.071	0.02506			
C-19 C-20 C-21	1.714 1.712 1.715	1.7023 (8)	NW-1 NW-2 NW-3	0.561 0.558 0.563	0.539 (8) 0.567 (6)	NC-12 NC-8 NC-9 NC-10		10	6.073 5.100 5.095 5.093	5.096	0.02137	5.074	
Av.	1.714		Av.	0.561		NC-6		20	4.263	4.262	0.1815	4.258	
Av. dev.	0.10%		Av. dev. (U.33%		NC-7 NC-3 NC-4		30	$4.261 \\ 3.627 \\ 3.640$	3.634	0.01570	3.609	
		ci. Papers, In	ast. Phys. C	Chem. Resea	erch (Tokyo)	NC-5 NC-1 NC-2		40	$3.637 \\ 3.119 \\ 3.104$	3.111	0.01364	3.110	
ING	5. 341, 17 , 13	40 (1901).											

NB-6

NB-11

NB-5

NB-9

NB-10

NB-4

NB-8

NB-1

NB-2

NB-3

NS-6

NS-1

NS-2

NS-3

NS-7

NS-4

NS-5

 C_6H_{16}

 CS_2

10

20

30

40

-10

0

10

20

4.253

4.261

3.682

3.666

3.677

3.176

3.171

2.793

2.787

2.781

3.409

2.797

2.805

2.348

2.349

2.129

2.118

4.256

3.675

3.173

2.786

3.409

2.801

2.349

2.124

0.01652

0.01446

0.01266

0.01127

0.008842

0.007359

0.006250

0.005721

4.290

2.724

- No. 341, 17, 125 (1931). (4) Houghton, G., McLean, A.M., Ritchie, P.D., Chem. Eng.
- Sci. 6, 132 (1957). (5) Kobatake, Y., Hildebrand, J.H., J. Phys. Chem. 65, 331
- (1961).
- (6)Kunerth, W., Phys. Rev. 19, 512 (1922).
- Loprest, F.J., J. Phys. Chem. 61, 1128 (1957). (7)
- (8) Markham, A.E., Kobe, K.A., J. Am. Chem. Soc. 63, 449 (1941).
- Rossini, F.D., "Selected Values of Properties of Hydro-carbons," API Project 44, Natl. Bur. of Standards, Washington, D. C., 1950. Timmermans, J., "Physico-Chemical Constants of Pure (9)
- (10)Organic Compounds," Elsevier, New York, 1950.
- Weissberger, A., "Organic Solvents," p. 137, Interscience, (11) New York, 1955.
- (12)Yen, L.C., Ph.D. dissertation, University of Texas, Austin, Tex., 1962.

RECEIVED for review August 10, 1961. Accepted October 27, 1961.

VOL. 7, No. 2, APRIL 1962